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Abstract

The Alzheimer’s Disease Neuroimaging (ADNI) database is an expansive undertaking by

government, academia, and industry to pool resources and data on subjects at various

stage of symptomatic severity due to Alzheimer’s disease. As expected, magnetic reso-

nance imaging is a major component of the project. Full brain images are obtained at every

6-month visit. A range of cognitive tests studying executive function and memory are

employed less frequently. Two blood draws (baseline, 6 months) provide samples to mea-

sure concentrations of approximately 145 plasma biomarkers. In addition, other diagnostic

measurements are performed including PET imaging, cerebral spinal fluid measurements of

amyloid-beta and tau peptides, as well as genetic tests, demographics, and vital signs.

ADNI data is available upon review of an application. There have been numerous reports of

how various processes evolve during AD progression, including alterations in metabolic and

neuroendocrine activity, cell survival, and cognitive behavior. Lacking an analytic model at

the onset, we leveraged recent advances in machine learning, which allow us to deal with

large, non-linear systems with many variables. Of particular note was examining how well

binary predictions of future disease states could be learned from simple, non-invasive mea-

surements like those dependent on blood samples. Such measurements make relatively lit-

tle demands on the time and effort of medical staff or patient. We report findings with recall/

precision/area under the receiver operator curve after application of CART, Random Forest,

Gradient Boosting, and Support Vector Machines, Our results show (i) Random Forests and

Gradient Boosting work very well with such data, (ii) Prediction quality when applied to rela-

tively easily obtained measurements (Cognitive scores, Genetic Risk and plasma biomark-

ers) achieve results that are competitive with magnetic resonance techniques. This is by no
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means an exhaustive study, but instead an exploration of the plausibility of defining a series

of relatively inexpensive, broad population based tests.

Introduction

Alzheimer’s Disease (AD) is a neurodegenerative illness which affects the elderly, and whose

public impact, therefore, will continue to grow as the population ages. In the final stages,

patients lose their independence, as well as their cognitive abilities. Because early symptoms

are similar in many respects to healthy aging, diagnosis can be delayed by mistaking cognitive

change for aging [1]. So, the disease may progress for one or two decades without discernable

symptoms but nevertheless, manifest classical neuropathological findings in the event of

autopsy due to unrelated death. At the point where it is symptomatic and can be more readily

diagnosed, it is extremely difficult to treat, since there is both a need to halt disease progres-

sion, as well as to undo prior neuronal damage.

In addition to aging, other factors play a role in the development and progression of the dis-

ease, including many of the same risk factors involved in diabetes, cardiovascular illness, stroke

and metabolic syndrome. These risk factors include hypertension, hyperlipidemia, sleep disor-

dered breathing, and systemic inflammation. Many genes and single nucleotide polymor-

phisms have been reported to accompany AD, but only the ApoE4 polymorphism has been

extensively validated [2, 3]. Many of these risk factors cause reduced delivery of oxygen and

substrate to the brain, with reduced removal of debris. AD is thus sometimes accompanied by

reduced blood levels of metabolic regulators and nerve growth factors, which stimulate nerve

growth and mitigate the impact of amyloid beta [4, 5].

The two main neuropathological findings in AD are amyloid-beta plaque deposits and

hyper-phosphorylated tau peptides. Both are associated with a toxic neural environment [6],

as well as increased rates of cortical atrophy and shape changes [7]. It is often unclear which

factors are causal and which merely a result of the underlying pathology. Energy balance, of

course, is also affected by mitochondrial dysfunction, which implicates an additional set of

potential DNA mutations at disease onset [8].

Due to the variety of pathways potentially involved in AD progression, one could hypothe-

size their association with multiple biomarkers, especially those found in plasma. Those plasma

biomarkers could supplement major prognosticators like cortical atrophy detected by MRI [9–

11] or even stand alone. In addition, hypometabolism and impairment of amyloid clearance

lead to alterations in well known PET and CSF biomarkers during various time frames of dis-

ease progression [12]. In this study, we explore the prediction of Alzheimer’s progression

based on plasma biomarkers and non-linear machine learning techniques.

Detectable alterations at an early stage

Early aspects of the disease include deterioration of cortical networks (e.g. the default mode

network) as a result of lost neuronal viability and connectivity. According to the dissociation

hypothesis [13], destruction of cortical networks involves both primary neural destruction, as

well as atrophy of functionally related cortical regions, now deprived of input. Thus, primary

atrophy would show up as reduction in volume on an MRI [14], whereas loss of input could

show up as a reduced signal on FDG PET images [15, 16]–implying a hypo-metabolic neural

state with reduced electrical activity. As cell survival in the network is reduced and with it net-

work function compromised, a pattern of atrophy spreads through the cortex starting in the

PLOS ONE Predict Alzheimer’s transition using machine learning approaches

PLOS ONE | https://doi.org/10.1371/journal.pone.0235663 July 27, 2020 2 / 26

Analysis of the Alzheimer’s Disease Neuroimaging

(ADNI) Database. figshare. Dataset. https://doi.org/

10.6084/m9.figshare.12568607.v1.

Funding: There is no funding provided to perform

analysis or present results with reference to our

specific project. The funders involved in setting up

and maintaining the ADNI national database, where

we obtained our data, are listed in the

Acknowledgements. Neither ADNI nor its funders,

some of which were commercial, have had any

communication with us related to or influencing the

specifics of our project. Their funding of ADNI does

not alter our adherence to PLOS ONE policies on

sharing data and materials.

Competing interests: The authors have no

competing interests with regard to this study.

https://doi.org/10.1371/journal.pone.0235663
https://doi.org/10.6084/m9.figshare.12568607.v1
https://doi.org/10.6084/m9.figshare.12568607.v1


temporal lobes. This ultimately is accompanied by amyloid-beta deposits and hyper-phosphor-

ylated tau protein [17]. Thus, the biomarker changes we are looking for stem from both pri-

mary effects due to disease pathology as well as secondary effects due to disease related neural

dysfunction.

Monitoring and interpretation of large numbers of biomarkers

Whatever is driving the abnormal neurochemistry or neurophysiology associated with AD is

also causing alterations in the levels of intermediaries that populate the underlying pathways.

There are many scenarios potentially associated with the course of AD, so we are inclined to

cast a wide net to look for these alterations. The ADNI database has values for 145 plasma bio-

markers (BM), as well as over 300 anatomical measurements from MRI regions of interest

(ROI). In terms of plasma biomarkers, some of these are byproducts of inflammation (inflam-

matory cytokines and stress hormones), related to neural plasticity growth factors–e.g., brain-

derived neurotrophic factors (BDNF), or metabolic activity regulators like leptin or insulin.

Although changes in these pathways normally might be benign and reversible, when stressed

and near the threshold of stable function, these changes could have serious clinical conse-

quence. Modeling the complex relationship between such a large number of biomarkers, with

few strong priors on their relationship or distribution lends itself to modern machine learning

approaches.

Well known models (Jack, Knopman et al. 2013) have presented time plots showing the

onset of symptoms and BM intensities as a function of time of progression. This suggests that

a multimodal model can take values of certain BMs, even those with no direct relationship,

and use them to place the subject within a progression time frame, or in reference to a time

anchor. In this study, we focus on predicting transition from mild cognitive impairment

(MCI) to full Alzheimer’s disease (AD) using non-linear machine learning techniques. This

transition is a well populated clinical milestone in the ADNI database and serves as a useful

subset for exploratory studies on disease progression. Non-linear machine learning methods

support such predictions without requiring the data fit a particular kind of smooth function.

In addition, due to the significant interest in events occurring at the earliest detectable

times, prior to standard diagnostic reach, we also look at the potential to distinguish between

NL and early MCI (stable MCI, see below). It is difficult to enroll NL patients who transition

to MCI during their participation in the ADNI study, since they are scarce at baseline, and it is

unclear when or if they will contract the illness. Thus we examine the period of disease incep-

tion by comparing biomarker values between the two cohorts (NL and stable MCI).

Machine learning approaches

Classification and regression trees (CART) are a type of supervised machine learning algo-

rithm, where supervised refers to the use of labeled data to build a model in order to make pre-

dictions on unlabeled data. In our initial approach, the label indicates a prediction as to

whether a patient will transition from mild (MCI; mild cognitive impairment) to severe Alz-

heimer’s (AD). We then subsequently used the label to classify patients as normal or baseline

early MCI. This was done based on our hypothesis that biomarkers values were again different

between the two labelled groups

The main advantage of CART is its intuitive interpretability, as the trained model is a

dichotomous tree, on which a researcher could trace the classification of any sample by hand.

There is no statistical requirement as to the distribution of the input predictors, e.g. normality;

nor is the quality of predictions compromised by the addition of redundant, otherwise colinear

or useless variables. One limitation of CART is its greediness. When building each split on the
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labeled data the CART algorithm tries to maximize the “purity” of the split at that step. This

greediness can easily lead to locally-maximal performance while missing a global optimum.;

A more important limitation of CART is that it cuts the solution space into hypercubes (e.g.

if a patient has marker X value below 5 and marker Y value above 7, it defines a quadrant in a

two dimensional Cartesian coordinate system). This can be undesirable if the relationship is

more complex (e.g. the product of X and Y should be below 25). One way to combat both such

limitations is to use many trees, yielding a Random Forest (RF) classifier; where many short

decision trees are generated with a randomly determined feature at each split, and their deci-

sions averaged. A closely related approach is called Gradient Boosting (GB), where regression

trees are fit in series, each trying to fit (or fix) the error of the previous weak learner. We com-

pare CART, Random Forests and Gradient Boosting in this paper and find that the latter two

give about the same performance and both out-perform CART. Support vector machine

(SVM) approaches, also tested, are known to perform best on small sets of predictor variables

and show their utility here on pre-compressed sets of variables.

Methods

The participants in the ADNI study provided written consent. The anonymized data was then

distributed by ADNI to approved investigators with ADNI projects. The use of this subse-

quently de-identified data was reviewed but not considered human subject research by my

institutional review board (NYU Langone Medical Center).

Our experiment has 320 patients with 525 different features available. However, some

approaches select features with high importance and perform the analysis just on them. We

also tested compression strategies using a 2-dimensional cognitive performance feature pro-

vided in ADNI, and a PCA derived 5 feature basis set from the baseline MRI data. The classifi-

cation task is challenging in that it has a bigger feature-space than the number of samples and

very few features are present for every single patient. In order to classify the patients efficiently

while avoiding overfitting, we dropped features with missing data, and we use an ensemble

classification algorithm to avoid the challenges of classification in high- dimensional spaces

(referred to as the curse of dimensionality) [18].

For every classification task with standard category and regression tree (CART) analysis, we

perform leave-two-out cross-validation. We train the model on all data points but two, and

then predict the group label for the left out data points. Each data-point have been left out

once, we measure the performance of the model by looking at the predictions of all left out

data points. Additionally, we set aside a test set of 45 patients that will never be seen during

training for more stringent evaluation. As mentioned above, first, we try classifying these two

groups using a standard Classification And Regression Tree (CART) [19]. In our case, we used

the Gini Impurity splitting criterion, the default choice in Python’s scikit-learn library.

Also as mentioned above, while in standard CART, each node is split using all available var-

iables, in Random Forests (RF; [20]), each node is split among the best of a subset of predictors

randomly chosen at that node. Thus, there are two parameters that have to be set for RF–the

number of trees (ntree) in the forest, and the number of variables (mtry) considered in the sub-

set at each node. The final prediction comes from the aggregation of the majority vote of the

ntree trees. Results below use the following values for these two parameters, ntree = 200, and

mtry = 5. (See S1 Appendix for schematic illustrating the difference between CART and RF.)

Two nice properties of RF are that (i) random forests approaches model complex non-lin-

ear functions that may not be (and in general are not) expressible in closed form; (ii) as for

CART, the addition of variables, highly correlated with current variables or completely irrele-

vant, does not degrade the importance of the original set of variables. We also used several
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analyses with the gradient boost technique, comparing results for the best set of features (by

AUC value) used with RF. We also employed Support Vector Machines (SVM) with a radial

basis function kernel. As suggested in the literature, SVMs do well generating predictions from

small sets of input variables–for example those using data compressed with Principal Compo-

nent Analysis (PCA). With the exception of RandomForest’s number of trees, all hyperpara-

meters were set to their default scikit-learn values.

In order to compare the performance of all of these predictors, we calculated the area under

the receiver operating characteristic (ROC) curve and the area under the precision-recall

curve. The former is less sensitive to class imbalance while the latter provides the more inter-

pretable result. We analyzed both of them in this study but used ROC to determine which clas-

sifier and feature combinations were most effective.

Data used in this study

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a pub-
lic-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI) and early Alzhei-
mer’s disease (AD). For up-to-date information, see www.adni-info.org.

In the ADNI I database, there were 1435 research identification numbers (RID; each

uniquely assigned to a subject) for which n = 815 were populated by demographic data includ-

ing age, gender, BMI, ApoE4 status, systolic blood pressure and years of education. We

focused on ADNI I, since ADNI II and “GO” did not yet report plasma BMs. (Later popula-

tions did have CSF amyloid beta and hyperphosphorylated tau values, but not the 145 plasma

biomarkers.) The data used in this study was downloaded on Jan 30, 2014. More recent data

will be reserved for a subsequent study looking at slightly different feature comparisons. There

were 566 subjects with plasma analyte BMs. Most individual BMs sampled occurred for all

subjects.

MRI values were well populated in ADNI I with ~815 subjects having MRI region of inter-

est (ROI). Variables were acquired independently from each hemisphere with various dimen-

sions including volume, thickness, and/or cortical area. For subjects diagnosed as MCI at

baseline (i.e., our target population), there were 327 total MRI variables and 341 subjects. This

representation of MRI-based anatomy, using raw data for all 815 ROIs, in whatever dimen-

sions they were listed, was called MRI1. No attempt was made to extrapolate to volume. A sec-

ond baseline MRI feature set (MRI1norm) was derived from 18 volume based ROIs,

normalized to subject intracranial volume. This reduced the variance due to subject cranial

size.

Annual rates of atrophy is a very important predictor of progression [21, 22]) This was cal-

culated as annual percent change (‘APC’) for a small subset (n = 19) of important ROIs using a

linear estimate. We calculated the difference between baseline and 6 month volumes, divided

by baseline value, multiplied by 100 to attain percent change. This value was then doubled to

annualize the atrophy rate. Values were calculated separately for each hemisphere as the fea-

ture set called MRI2; and derived from volume based measurements from hippocampus, ento-

rhinal cortex, precuneous, posterior cingulate, amygdala, lateral ventricle, middle temporal

lobe, total white matter cortex, and total gray matter cortex.

A final MRI representation, the third one derived solely from baseline values, was a com-

pressed set of MRI variables (MRIPCA). This composite of many MRI variables at baseline,
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was derived using principal component analysis (PCA) producing a 5 eigenvector (EV) basis

set from 42 ROI ADNI variables. These 42 ROI variables were determined by Risacher [23, 24]

to be the best predictors of conversion from MCI to AD. We confirmed that at least two com-

ponents of this set of EVs (EV#1 and EV#3) significantly correlated with diagnosis (NL, MCI,

AD; [25]), and also with executive function (EV#1) and memory (EV#3) We used the PCA

subroutine from SPSS version 24, selecting EVs with coefficients > 1.0 in the Spree plots. ROIs

for EV#1 and EV#3 (coefficients > 0.4) follow. The most prominent vector (EV#1) represents

many temporal lobe and other regions including: left (L) and right (R) precuneous cortical

thickness (CT); L & R fusiform gyrus CT; L & R inferior (INF) parietal CT; L & R INF tempo-

ral CT; L & R middle temporal CT; supramarginal gyrus CT; L & R superior temporal CT. The

second most prominent vector (EV#3) includes: L & R inferior lateral (lat) ventricle (vent), L

& R lat vent, and CT of R entorhinal cortex. Thus 4 feature sets expressed the MRI acquired

data, 3 based only on baseline data. The number of variables in each varied considerably, as

did the most appropriate machine learning method to apply.

Composite cognitive test scores

ADNI investigators have derived and posted composite scores for executive function

(ADNI-EF) and memory (ADNI-MEM) using data from the ADNI neuropsychological battery

and applying modern psychometric methods. ADNI-EF and ADNI-MEM have been described

by the ADNI investigators [26, 27], and their values are currently available in the database.

There were many cognitive tests administered to subjects at different intervals. The com-

posite memory score (ADNI-MEM) included: Rey Auditory Verbal Learning Test (RAVLT),

ADAS Cog, Logical Memory and Mini-mental state exam (MMSE). The latter (ADNI-EF)

includes values from: Category Fluency—Vegetables, WAIS-R Digit Symbol Substitution,

Digit Span Backwards, Trails A and B, and 5 Clock Drawing items (circle, symbol, numbers,

hands, time). These scores were available from 815 subjects in ADNI I.

Since they represent a novel variable, we present descriptive statistics here, namely (mean

±STD error, min, max): for ADNI Mem at baseline, (0.0304 + 0.030, -2.266, 2.599) and ADNI

EF at baseline (-0.0425 ± 0.0337, -2.7600, 2.3620).

Some biological predictors (PET imaging, Amyloid beta, hyper-phosphorylated tau),

although indicated as important diagnostics in the literature were not used in this analysis;

since the measurements were not available for enough of the subjects at different ADNI enroll-

ment sites, and also didn’t overlap (by subject) with other critical variables like MRI and

plasma biomarkers.

Data sets considered in this study

In order to explore how examining multiple modalities worked in practice, we employed a

variety of scenarios using different combinations of the following feature groups: (i) baseline

plasma biomarkers; (ii) ADNI Memory and Executive Function composite scores at baseline;

(iii) demographics, including gender, BMI, age and systolic blood pressure as well as ApoE4

related risk; (iv) over 320 MRI regions of interest (MRI1); (v) 5 principal component EVs

derived from a select group of 42 MRI ROI (MRIPCA); and (vi) atrophy rates of 19 specific

ROIs chosen for their relevance for predicting AD progression from the literature (MRI2), and

(vii) 18 values from baseline MRI normalized to intracranial volume (MRInorm). We looked

at these cohorts alone and in different combinations. Subgroups of the plasma biomarkers

were chosen based on the literature (PlasmaAlzRelevant), including our own published work

([25, 28] also see Discussion.); but were also explicitly identified from the “kits” marketed by

Myriad Rules Based Medicine, the company that processed the multiplexed immunoassays
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used by ADNI. These kit categories included the following (with number of assays in parenthe-

sis): cardiovascular (n = 77), inflammation (n = 46), neuro (n = 35), and metabolic (n = 10).

We also examined the entire plasma set as a group.

Up-to intervals

Predicting binary outcomes (stable, progressive) for the transition from MCI to AD is compli-

cated by the censoring effect of people leaving the study before reaching an end point, or the data

acquisition being temporarily closed for data release. Both could occur before an individual

reached a transition point. Therefore, we define “up-to intervals” where transitions are status

changes within the time interval relevant to the patient. An up-to interval is defined by the end

time point (tf). Patients qualify for analysis if they are either still MCI (Mild Cognitive

Impairment) when t = tf (i.e. “stable”), or they have progressed to AD for t< = tf (“transitioned”).

Due to the discrete time points at which particular cognitive tests scores or BM measure-

ments were administered (acquired)–points at which patients medically transition or adminis-

tratively exit from the study—tended to cluster. We divided clusters at the troughs between

them and defined the up-to intervals considering these troughs. First, patients were assigned

target variables by their status at a certain time point. For the t = 2.25 year target time frame,

used in the results reported below, patients who remained in the study at 2.25 years from base-

line and were still considered MCI were assigned a target value of ‘1’ (“stable”). Patients in

severe or advanced Alzheimer’s (AD) before 2.25 years were assigned a value of ‘0’ (“transi-

tional”), regardless of whether they remained in the study after the transition. This particular

time frame (baseline to 2.25 years) was chosen in order to achieve a balance in the two patient

outcomes (Fig 1). For the analysis of earliest changes, we compare any combination of feature

Fig 1. Distribution of subject assessment by time bins. Shows the distribution of elapsed times (by bins) at the point

of subject transitioning, having data exported, or having main binary determined. The bar graph displays the

proportion of subjects whose status was determined during 4 specific time intervals: prior to 1.25 yrs, 1.25 to 2.25 yrs,

2.25 to 4.25 yrs, and beyond 4.25 yrs. Note that target value ‘1’ subjects included those who transitioned after 2.25

years, or were declared stable at least once at or after that same point.

https://doi.org/10.1371/journal.pone.0235663.g001
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values between normal subjects at baseline, a subjects identified as stable in the up-to analysis,

i.e. subjects diagnosed as MCI at baseline and stable for 2.25 years. Rather than predicting

transitions of individual subjects, we compare feature value averages between these two

cohorts of subjects. The comparison is done using Random Forests, shown to be the most

effective ML technique in the prior analysis.

Results

In this section, we compare mean AUC measurements averaged over 20 random test subject

groupings to determine how the 4 machine learning approaches (CART, GB, RF, & SVMs)

compare. (Each bar of a mean value also has an error bar based on the standard error.) We fur-

ther examined which feature groups are most successful in this same analysis at predicting the

transition from incipient MCI to full Alzheimer’s Disease.

Each ML approach was applied to different combinations of features including four group-

ings of MRI (3 baseline representations: MRI1, MRI1PCA, MRI1norm) plus cortical atrophy

rates (MRI2); five groupings of plasma biomarkers (RBM kits: “cardiac”, “inflammatory”,

“metabolic”, “neuro”; a selection by authors based on the literature, “plasmaAlzRelevant”),

plus demographics (BMI, Systolic BP, Age, gender), genetic risk (ApoE4) and compressed cog-

nitive scores provided by ADNI (memory, executive function). To avoid the enormous num-

ber of permutations required to look at all combinations of features, we first examined

individual feature groups as well as pairs of groups, where we required at least one prediction

better than random per group; i.e. at least one classifier with a median performance above 0.5

AUC allowed us to examine the feature group. We selected only one feature group from each

modality at a time (with the exception of pairing atrophy with baseline MRI).

For groups with many features, Random Forest and Gradient Boost gave the highest AUC

scores, with RF values greater than GB for more than 90% of the feature inputs. The next two

figures display AUC means over the 20 subject cohorts using bar graphs. We classified predic-

tions where the mean AUC > 0.7 as ‘useful’, as well as where AUC > 0.75 as ‘good’. ‘Signifi-

cant’ were those with the entire 95% AUC error bar> 0.7. There were 6 runs with ‘significant’

performance, and another 6 with ‘useful’ or ‘good’ predictions from over 100 analyses (or fea-

ture groupings).

We derived one figure (Fig 2) focused on MRI panels to compare the results from two dif-

ferent MRI representations (MRI1 and MRI1PCA; top panels), as well as the impact of adding

other modalities (cognitive features and atrophy rates; bottom panels).

In Fig 2, the feature grouping with fewer variables (MRI1 PCA) leads to much larger AUC

values for SVM (AUC > 0.7). For MRI1, with many variables, SVM is approximately 0.5,

whereas RF is nearly 0.7. Addition of cognitive or atrophy data (MRI2) improves AUC values

for MRI1 PCA. The entire SVM error bar of the AUC mean (derived from the 20 subject

cohorts) is > 0.7 for MRI1PCA plus Cognitive, and the entire RF error bar is >0.7 for MRI1

PCA plus MRI2. The MRI values normalized to cranial volume (MRI NORM) gave at best an

AUC of only 0.65 (RF), examined alone. Combining MRI1norm with atrophy (MRI2) resulted

in mean AUC for RF of 0.74. Combining MRI1norm with cognitive produced a result with

nearly equal predictive value (AUC = 0.72) for 3 of the ML approaches: RF, GB and SVM (not

shown). Thus different MRI representations appear to have different utility depending on

which other features they are combined with.

A second similar figure (Fig 3) compared several non-invasive, relatively inexpensive and

easily acquired feature groupings, which excluded imaging. Thus, cognitive was shown with or

without the genetic risk variable (upper right panel), and with one of two plasma biomarker
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groups each (kit inflammatory, or kit metabolic; bottom left and right respectively) for the

other two panels.

In summary, 1) MRI PCA and cognitive were the only single modality tests with mean

AUC >0.7 for at least one ML approach; 2) MRI Norm plus Cog was the only test result

Fig 2. Comparison of different MRI representations & combining baseline MRI data with cognitive or MRI atrophy data. Color coding for bars: red–

CART, blue–gradient boost, GB; purple—random forest, RF; dark gray–support vector machine, SVM. For each plot, bars on the left represent performance

using leave-two-out cross-validation on the training set, whereas bars on the right represent performance using an independent 45 person test set. The test set

was never seen in training and was randomly selected in that it was the complement to the randomly selected training set. We interpreted results from the test

set.

https://doi.org/10.1371/journal.pone.0235663.g002
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where all of RF, GB and SVM had mean AUC values > 0.72; 3) Cog plus any of the follow-

ing—MRI2, MRI PCA, Genetic Risk, or pBM kit inflammatory; and MRI PCA plus MRI2

all had the entire AUC error bar above 0.7. So among the pairs and singlets of modalities,

those including Cog, Genetic Risk and pBM kit inflammatory did very well, as did those

containing both static and atrophy related MRI measurements. MRI PCA also had among

the highest AUC values, when looking at the SVM measurement, since it was the MRI

data representation with by far the smallest number of variables. CART itself, with no

built-in protection against over definition, was consistently the least predictive of the 4,

and, with few exceptions, showed smaller AUC values than the other ML techniques.

(This point is demonstrated by plotting analysis results with ROCs in the S2 Appendix; as

mentioned earlier, a diagrammatic aide is in the S1 Appendix). Of the above results, the

one that was most surprising and most promising from a public health perspective was

that Random Forests or Gradient Boosting applied to relatively easily obtained measure-

ments (Cognitive scores, Genetic Risk and plasma biomarkers) achieve results that are

competitive with magnetic resonance techniques.

Fig 3. Further comparison of AUC for feature groups focused on non-invasive, easily acquired modalities. As in

Fig 2, for all panels, left bars were training AUC results and right bars were test AUC results, the latter being used in

our interpretations. The 4 bars show mean AUC as a function of ML technique (left to right, CART, GB, RF, and SVM;

same color scheme as Fig 2). Cognitive features used in all panels. Top right also includes genetic risk. Bottom two

panels also include plasma biomarker kits (inflammatory (L), metabolic (R)).

https://doi.org/10.1371/journal.pone.0235663.g003
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Random forest classifier on small feature set including plasma BMs plus

cognitive

In this study we are particularly interested in plasma biomarkers due to the low cost of acquisi-

tion and analysis, and ease of obtaining blood samples during normal clinical visits. Using a

feature set consisting only of a subset of plasma BMs plus the cognitive and demographic base-

line variables, the prediction has an ROC AUC = 0.71 (Fig 4).

The relative importance of the features, as determined from the GINI coefficients, are

shown in Table 1. This exercise highlights the importance of the cognitive features followed by

several of the apolipoproteins and BMI. Leptin, insulin, C Reactive protein and vitronectin

have been identified as important in other studies.

Fig 4. RF Classifier with subset of plasma BMs, compressed cognitive scores, and demographics. The features include the 2 compressed

ADNI cognitive variables, 14 plasma analytes chosen from the literature (including 9 Apolipoproteins (Ai, Aii, Aiv, B, Ci, Ciii, D, E, H) plus

leptin, insulin, CRP, vitronectin). Demographics included, systolic BP, BMI, age, gender. The importance is displayed as the GINI coefficient

below in Table 1. AUC = 0.71; PR curve = 0.60.

https://doi.org/10.1371/journal.pone.0235663.g004

Table 1. GINI Importance of features including plasma biomarkers.

Feature Coefficient Feature Coefficient

ADNI_Executive Function 0.1383 Apolipoprotein AI (mg/mL) 0.0438

ADNI_Memory 0.1000 Apolipoprotein AIV (ug/ml) 0.0417

Apolipoprotein D (ug/ml) 0.0571 Apolipoprotein H (ug/mL) 0.0416

BMI 0.0550 VSBPSYS 0.0410

Testosterone (ng/ml) 0.0520 Leptin (ng/mL) 0.0413

Apolipoprotein Ci (ng/mL) 0.0500 Age (yrs) 0.0394

Apolipoprotein B (ug/ml) 0.0499 Insulin (U/mL) 0.0378

Apolipoprotein Aii (ug/mL) 0.0467 C Reactive Protein (ug/mL) 0.3733

ApolipoproteinCiii (ng/ml) 0.0460 Gender 0.3383

Vitronectin 0.0439 Apolipoprotein E (ug/ml) 0.00439

https://doi.org/10.1371/journal.pone.0235663.t001
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Random forest classifier substituting MRI eigenvectors for plasma

biomarkers, and combining both with atrophy features

In this subsequent run, we compared the efficacy of plasma BM and MRI, the latter a diagnos-

tic standard. We substituted the MRI PCA group for the 14 pBMs. This PCA representation is

a feature set more comparable in numbers to pBM, since the MRI1 feature groups is several

hundred variables. We have also shown that two of the eigenvectors in this group correlate

well with the two ADNI compressed cognitive variables (ADNI EF, ADNI Mem) giving some

functional interpretation to these eigenvector features [25]. Both feature groups had the two

ADNI cognitive variables, plus the demographic/vital signs age, BMI, systolic blood pressure,

ApoE4 risk and gender. As with pBMs, the predictions based on MRI were improved consider-

ably by the addition of the two cognitive composite variables, increasing AUC from

AUC = 0.65, to AUC = 0.73 (Fig 5).

Of interest is whether we can continue to improve predictions by adding important groups

of these features together. Combining the plasma based and MRI based feature sets from the

last two analyses gives us an improvement in the prediction (AUC = 0.75; Fig 6.; Table 2).

In short, different sets of features combine to represent different dynamics, causing particu-

lar features to climb or fall in significance due to collinearities, other relationships, or proxim-

ity to clinical milestones. A set of features derived from small blood samples would be ideal for

mass screenings and tracking studies. Optimization by combining multiple modalities could

provide a more precise diagnostic for clinics having greater resources and time.

Since the cortical atrophy variables are known to be important as AD predictors [14], we

added 19 APC (annual percent change) atrophy variables to the feature set just used. The AUC

value improved to 0.77 (see Fig 7). The precision recall (PR) curves also improve over this

same sequence (Figs 4–7). As AUC increases from 0.71 to 0.77, the PR curves increase from

0.60 to 0.67. However, acquiring the atrophy features requires a second imaging session, thus

Fig 5. RF classifier with compressed cognitive scores, baseline MRI, and demographics. The features include the 2 compressed ADNI

cognitive variables, the 5 Eigenvectors from PCA compression of MRI, and demographics. AUC = 0.73; PR curve = 0.62, both slightly improved

by the substitution.

https://doi.org/10.1371/journal.pone.0235663.g005
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adding to cost. The improvement is to some extent expected, since we are getting a peak fur-

ther into the future and closer to the predicted event. In any case, using non-invasive and rela-

tively inexpensive testing including cognitive, genetic risk, age, and, for example, kit

inflammatory plasma biomarkers with Random Forest (or Gradient Boost) gives a high AUC

of 0.71, which we saw improved slightly to 0.73 by substituting MRI data at baseline (and fur-

ther improved to 0.75 by combining both modalities).

Fig 6. RF Classifier with subset of plasma BMs, compressed cognitive scores and MRI, and demographics. The features include the 2

compressed ADNI cognitive and MRI variables, 14 plasma analytes chosen from the literature and demographics. AUC = 0.75, PR curve = 0.67.

This analysis includes all the features used in both Figs 4 and 5 resulting in a slight improvement for both analysis parameters.

https://doi.org/10.1371/journal.pone.0235663.g006

Table 2. GINI importance of features from MRI eigenvectors and plasma BMs.

Feature Coefficient Feature Coefficient

ADNI_Compressed Executive Function 0.1153 Apolipoprotein H (ugmL) 0.03112

Apolipoprotein E (ug/ml) 0.0855 VSBPSYS (systolic BP) 0.03087

ADNI_Compressed Memory 0.0801 Apolipoprotein Aiv (ug/ml) 0.03077

CReactiveProtein (ug/mL) 0.0666 Insulin (U/mL) 0.03057

Apolipoprotein D (ug/ml) 0.0453 Age (yrs) 0.02962

BMI 0.0440 Leptin (ng/mL) 0.02950

MRI Eigen Vector #4 0.0380 Vitronectin (ug/ml) 0.02869

Apolipoprotein B (ug/ml) 0.0362 MRI Eigen Vector #3 0.02839

Apolipoprotein Ci (ng/ml) 0.0352 MRI Eigen Vector #1 0.02728

Apolipoprotein Aii (ng/ml) 0.0346 MRI Eigen Vector #2 0.02575

Apolipoprotein Ciii (ug/ml) 0.0341 Gender 0.02426

Apolipoprotein Ai (mg/ml) 0.0333 Testosterone (ng/ml) 0.002845

MRI Eigen Vector #5 0.0324

lists in order of decreasing coefficient size the features in order of the diminishing of their importance. Among the top 7 most important features are the composite

executive function (EF) score and composite memory (Mem), an MRI eigenvector, 3 plasma biomarkers and a demographic. EV#4 includes: L. accumbens vol, R.

ventral dorsal column vol, L. & R. amygdala vol, L. & R. hippocampal vol, R. entorhinal vol.

https://doi.org/10.1371/journal.pone.0235663.t002
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From Table 3 GINI coefficient data of the features, we can assess importance. We note that

among the top 5 features are the 2 ADNI cognitive performance variables, the plasma analytes

Apolipoprotein E and C Reactive protein, as well as right hippocampal atrophy rate.

In summary, predictions of a transition from MCI to AD using Random Forest techniques

depend strongly on baseline values of cognitive performance. Adding either plasma

Fig 7. Further AUC ROC improvement is seen combining pBM, MRI, cognitive scores, atrophy rate and demographics. To the features

used in Fig 6, we add 19 atrophy features (APC), estimates of annual % change. This improves the AUC from 0.75 to 0.77. The specific MRI

regions of interests used to generate atrophy variables are shown in Table 3 where provided is the ADNI code, the neuroanatomical name, and

GINI coefficient weighting.

https://doi.org/10.1371/journal.pone.0235663.g007

Table 3. GINI importance of features from plasma BMs, MRI, cognitive, atrophy rate & demographics.

ADNI Code Variable Weight ADNI Code Label Weight

ADNI EF Executive Function 0.0717 ST50TA APC; L. Posterior Cingulate 0.0247

ApoE (ug/ml) Apolipoprotein E 0.0571 ST109TA APC; R. Posterior Cingulate 0.0216

ADNI Mem Memory 0.0526 Apo Aii (ug/ml) Apolipoprotein Aii 0.0205

CRP (ug/ml) C Reactive Protein 0.0379 Apo Ciii (ug/ml) Apolipoprotein Ciii 0.0202

ST88SV APC_R. Hippocampus 0.0351 ST19SV APC; L. Gray Matter Cortex 0.0199

ST79SV APC_R. White Matter_Cortex 0.0324 ST37SV APC; L. Lateral Ventricle 0.0198

ST52TA APC; L. Precu-neous 0.0302 ST12SV APC; L. Amygdala 0.0196

MRI EV #4 Eigenvector 0.0297 ST29SV APC L. Hippo- campus 0.0196

ST111TA APC; R. Precu-neous 0.0286 ST78SV APC; R. Gray Matter cortex 0.0191

Apo D (ug/ml) Apolipoprotein D 0.0271 Apo Ai (ug/ml) Apolipoprotein Ai 0.0191

ST24TA APC; L. Entorh-inal Cortex 0.0266 Age Age (yrs) 0.0189

ST83TA APC; R. Entorh- inal Cortex 0.0260 Apo B (ug/ml) Apolipoprotein B 0.0189

BMI Body Mass Index 0.0250 Insulin (U/ml) 0.0188

Features by ADNI code in the first column, and then by standard name in the second column, where “APC” indicates annualized atrophy rate as a percent–rather than

baseline value.

https://doi.org/10.1371/journal.pone.0235663.t003
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biomarkers or MRI alone increased AUC values further above 0.7, and combining them

increased AUC further to 0.75. Addition of atrophy variables leads to an even higher AUC

level, ~0.77, an improvement that comes at the economic cost of additional MRI sessions.

Feature importance

Given the large number of features, it is useful to rank their classifying potential, thus giving a

rational basis for prioritizing data collection in future studies. Random Forests have a built-in

method for calculating feature importance in relation to a given classification task [29] (Chap-

ter 6). This is obtained by comparing each variable’s ability to decrease the GINI impurity met-

ric across the trees in the forest. The tables above (I-III) have feature lists ordered by

importance based on this metric. While some features are often seen at the top of the list, the

exact ordering of particular features is not standard. Some important features for one group

may not maintain that importance when combined with a different group of features.

We asked the question here whether the order of importance remains relatively consistent

if the feature set is maintained, but we examine a different random group of test subjects.

While some of the order is maintained, the absolute values of the Gini coefficients and the

AUC vary as different random groups of test subjects are chosen. So in our figure presentation

above, we have used averages of the 20 subject cohorts (Figs 2 and 3), and/or have shown

results from each subject cohorts overlapped as individual lines (Figs 4–7).

The potential utility of lowering the number of features from the raw total (~500) to values

much smaller than the number of subjects is apparent. The cognitive variables were already

compressed by ADNI from a few dozen test results to two parameters. The several hundred

baseline MRI variables (MRI1) were compressed to 5, where 2 of the eigenvectors partially rep-

resent particular physical (e.g. temporal lobes, fluid spaces) and functional attributes (executive

function, memory scores). Decent AUC values were attained during predictions with as few as

7 features.

To find subgroups for the ~150 plasma biomarkers in ADNI, we could pick analytes from

literature reports studying Alzheimer’s or categories incidentally identified commercially (bio-

tech testing companies for example). There are different Kits available from Rules Based Medi-

cine (RBM), the company which did the testing for ADNI, and each has its own list of analytes

which we used in our model. For one particular line of inquiry, we examined the reproducibil-

ity as a function of subject cohort. First, we concentrated on feature groups generated with

non-invasive testing and without imaging. This included the feature groups cognitive perfor-

mance, demographics, genetic risk (APO E4), and one of the plasma kits (kit metabolic or kit

inflammatory). Then for contrast, we also looked at the most comprehensive group, the All

Features Group. For all 3 examples, we had surprisingly consistent lists of feature importance

order comparing several subject cohorts, picked at random.

The next two figures (Fig 8A & 8B) use importance lists for several different groups of sub-

jects. We used the reduction in the mean GINI impurity metric to generate an ordered list of

importance (x axis), and then plotted the coefficients (y axis) for each cohort. Although, there

was some disparity in terms of features switching places, or shifting up and down several places

on the list, the correlations amongst the lines in the two figures was excellent. In Fig 8A., look-

ing at 3 cohorts, we obtained an average correlation coefficient of 0.9829 ± 0.044 (mean ± SE;

p<0.0005). The plasma biomarkers cohort was kit metabolic. In Fig 8B., the average correla-

tion coefficient over all pairs of curves is 0.9702 ± 0.0033 (u, SE; p<0.0001). A similar exercise

with the ALL FEATURES (n = 522) cohort also showed high correlation (0.702; p<0.0005).

In the importance lists from the All Features group from two different subject cohorts (i.

d.,406505; i.d.,112315), we identified the features that occurred in the first 25 slots for both, i.e.
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the number of pairs among the 25 best features. There were 16 pairs (features found in both

subject cohorts), including plasma analytes alpha1 micro-globulin, alpha2 macro-globulin

[30], vitronectin, follicle stimulating hormone, plus intracranial volume, atrophy rate of right

sided cortical gray matter, choroid plexus, and portions of the following brain regions (cingu-

late, entorhinal cortex, frontal gyrus), plus right inferior lateral ventricle volume. Of these 16

features constituting the pairs, 13 were in the list of top 25 features generated from an average

over all 20 subject cohorts. The feature groups for the non-invasive, non-imaging features

were cognitive performance, demographic, ApoE4 risk and Kit Metabolic (panel a); and the

top 10 predictors were ADNI EF, ADNI Mem, VSBPSYS (systolic blood pressure), ApoE4

gene risk, Leptin, Adiponectin, Resistin, Age, Luteinizing hormone, and prolactin. For the 2nd

feature group (cognitive, demographic, ApoE4 risk, Kit inflammatory; panel b.) the best fea-

tures were: ADNI EF, ADNI Mem, alpha 1 antitrypsin, SYS BP, Interferon gamma, BDNF,

Macrophage colony stimulating factor, Von Willebrand Factor, and Ferritin.

Using GINI importance coefficients with Wilcoxon to rank importance of feature

groups. We now compare importance for plasma biomarkers and MRI feature groups (of

comparable size). We used GINI importance coefficients to rank individual features and then

Wilcoxon non-parametric techniques to determine which modality (feature group) had the

highest importance. We compared Kit Inflammatory (n = 26) with MRInorm (n = 18) and

separately with MRI2 (n = 18); Kit Neuro (n = 24) with MRI2; and, total plasma biomarker

group (n = 143) with MRI1 (n = 330).

Kit inflammatory had a higher mean rank than MRInorm (26.8 vs 16.3; p = 0.008); and,

than MRI2 (27.8 vs 15.0; p = 0.001). Kit neuro had a higher rank than MRI2 (25.9 vs 16.7;

p = 0.008). Finally, comparing 143 plasma biomarkers to 330 MRI ROIs derived a larger mean

Fig 8. a & b represent plots of the importance coefficients (y axis) ordered on the X axis by feature importance. We used the mean importance from 3–4 subject groups,

but the same features for each. Each line represents a different subject group. Top panel [a] is for the groups described above including Kit Metabolic and Panel [b] is for

same plus Kit Inflammatory. The average ordering is shown. The general profile of the GINI coefficients is illustrated by the plots.

https://doi.org/10.1371/journal.pone.0235663.g008
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rank (258.15) for total plasma than MRI (227.83) at p = 0.027. This showed that plasma groups

were very competitive, if not superior to, MRI feature groups using GINI coefficients.

Comparison of ROC AUC as a function of adding plasma features to other non-imaging

features during disease progression. Looking at RF generated AUC values for ROC in 10

random test/train cohorts, we examined whether adding plasma to cognitive/demographic fea-

ture sets was a significant improvement. We also compared adding plasma features with add-

ing features from MRI data. The best plasma group ‘hot set’ was compared against the features

identified in various commercial kits. Starting with a baseline of cognitive and demographic

features, we found that genetic risk and hot set both increased average AUC (p<0.05), with the

combination further increasing AUC (p<0.01). However, adding kit cardiac or kit inflamma-

tory alone was not significant (p<0.1). Starting with cognitive, demographic and genetic risk,

AUC was increased by addition of plasma “hot set” (p<0.05). Certain combinations of adding

MRI to cognitive and demographic were also effective to a similar extent as adding plasma

“hot set”, namely: MRI1 (p<0.05), and MRIPCA (p<0.01). This is consistent with Figs 4–7

where combining features from imaging, cognitive, and plasma modalities saw step wise

increases in AUC over the range of 0.7 to 0.8.

Comparing plasma and MRIPCA. In Table 4, we examine the Inflammatory Kit Bio-

markers plus the compressed baseline MRI (MRI PCA), absent the powerful cognitive features

which often dominate. We are left with a sparse feature set, a slightly different mix of modali-

ties than prior runs; one which would be appropriate for an imaging center without resources

for cognitive testing. Two of the features in the top 5 include 2 cytokines (TNFalpha; Interleu-

kin 8) whose elevation has already been reported associated with post surgical cognitive loss

[28].

Automatic diagnosis using plasma features at the point of disease inception–detecting

deviations from normal. The analysis of the earliest changes, as one moves out of diagnostic

normal, was tested for a similar group of features as used for studying the later transition

highlighted in Figs 4–7. We used Random Forests, shown to be very effective in the earlier

analysis. The results are displayed in two figures which use (for each feature set) ROC AUC

(left panel) and Precision/Recall curves (right panel). Fig 9 shows results from a variety of

plasma biomarker groups, whereby the most effective was determined (namely dxb_12x27). In

Fig 10, we compare this most effective plasma biomarker group (dxb_12x27) against 3 of the

MRI representations and cognitive performance. Note the plasma biomarkers alone gave

excellent AUC values, and, furthermore, the plasma biomarkers alone were competitive with

or better than the MRI representations alone or cognitive performance alone. Adding the best

plasma feature set improves the other modalities (MRI, COG).

Table 4. GINI importance features from MRI PCA and kit inflammatory.

Feature Weight Feature Weight

Tumor Necrosis Factor alpha 0.09097 Von Willebrand Factor 0.03095

Vascular Cell Adhesion Molecule 0.07858 Fibrinogen 0.03071

MRI Eigenvector #5� 0.04592 Factor VII 0.03031

Interleukin 18 0.03466 Eotaxin1 0.03022

Interleukin 8 0.03446 C Reactive Protein 0.03007

Alpha1 Antitrypsin 0.03386 Brain Derived Neurotrophic Factor (BDNF) 0.02978

Beta2 Microglobulin 0.03129 VascularEndothelialGrowthFactor (VEGF) 0.02975

Tumor Necrosis Factor Receptor 2 0.03128 Stem Cell Factor (SCF) 0.02940

�Includes various areas from cingulate cortex.

https://doi.org/10.1371/journal.pone.0235663.t004
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Examining 5 different plasma cohorts (dxb_12 (best set), kit cardiac, kit neuro, kit inflam-

matory and kit metabolic) in testing our ability to discriminate between NL and early MCI, we

found that the best (dxb_12) had an AUC of 92.2 with the other plasma cohorts at AUC values

86.0, 84.0, 75.0, and 64.0. All had precision recall above 90.0 except Kit Metabolic (83.4). These

were all better than predictors of progression from MCI to full AD (Figs 4–7), where the best

AUC value was ~ 0.8 (80.0 normalized to 100).

We then compared the select dxb_12x27 plasma cohort with the full set of cognitive features

and 3 MRI representations. Examining the features separately we obtained 92.2 (Dxb_12x27),

82.1 (Cognitive), 69.5 (MRInorm), 65.7 (MRI1) and 51.9 (MRI2). Adding the plasma cohort to

cognitive or the MRI representations respectively gave AUC values of 95.5, 91.8, 80.8, and

91.9. All showed improved prediction (increased negativity in Z value) with addition of the

plasma cohort and using nonparametric rank statistics (see Table 5).

All the plasma feature cohorts alone as well as cognitive alone were significant at p = 0.000

showing the same order in AUC values (dxb_12x27, kit cardiac, kit neuro, kit inflammatory,

and kit metabolic) as negative Z values. Cognitive was comparable to kit neuro, and smaller

than dxb_12x27 (which when added to it increased the negative Z value). The best plasma

cohort had better Z values than any of the MRI feature groups alone, and Improved their pre-

dictions when combined with them (see Table 6).

Discussion

For Alzheimer’s Disease, early detection is crucial and often occurs in the primary care setting,

a setting lacking in specialized imaging equipment [31]. Although there are many points

where deviations from normal could result in interpretable biomarker signals, the anatomical

distribution of the source of these analytes, the measurement noise, the variability due to fac-

tors only marginally related to AD risk (e.g. normal aging, coronary artery disease), as well as

collinearities amongst biomarkers, present challenges in developing explicit biomarker signa-

tures with generalizable relevance over many patients.

However, our work has shown that a few inexpensive biomarkers, using random forests or

gradient boosting approaches, can give results that are nearly as good as using data from more

expensive imaging techniques like MRI and PET, which however should be used as a final vali-

dator. We also note that PET imaging and CSF sampling from the spinal cord are highly pre-

dictive; but are considered ‘greater than minimal risk’ interventions by human subject

regulations. Relatively inexpensive predictions could be based on analyzing milliliter volume

blood samples for multiple peptide analytes, genetic mutations with further improvements

from cognitive testing—all of which are non-invasive. These less expensive, less invasive bio-

markers also happen to consume far less patient and staff time during the acquisition step,

allowing for mass screening and participation from sites with modest resources. A comprehen-

sive discussion of all the ways variables may predict the progression of Alzheimer’s are beyond

the scope of this article, and have been reviewed many times. However, we briefly touch on

these categories in the S3 Appendix section with particular emphasis on the different groups of

plasma biomarkers. Lists of plasma biomarkers included.

Fig 9. Left panels are Receiver Operator Curves (ROC) and right panels are associated precision recall curves. Blue

curves are for the feature set comprising the putative best plasma feature cohort. Purple curves are for the feature set we

are comparing,.and orange curves are for the combination of both feature sets. The axes for the ROC plots show true

positive rate (TPR; y axis) versus false positive rate (FPR; x axis). The x-y axes for the ROC curves are recall (x) vs

precision (y). The putative best plasma cohort is dxb_12x27. The comparators are kits cardiac, inflammatory, metabolic,

and neuro. Results confirm that dxb_12x27 is the best feature group. AUC values are normalized to 100 (i.e. percent) in

Figs 9 & 10.

https://doi.org/10.1371/journal.pone.0235663.g009
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Fig 10. Comparison of best plasma feature group with different MRI and COG feature groups as comparators.

The compactor feature groups are cognitive, MRI1, MRInorm, and MRI2 (from top to bottom). They are all compared

to the best plasma feature group. Fig 10 has the same format as Fig 9.

https://doi.org/10.1371/journal.pone.0235663.g010
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Clinical application of approach

We consider the Alzheimer’s Association protocol for managing and diagnosing AD in order

to understand how the analysis described in this research could be applied. In summary, an

initial self-report of cognitive problems leads to a variety of rule-outs whereby alternative

causes are assessed, treated as warranted and/or discarded as options. If there is no improve-

ment in cognitive behavior, then the next cycle is engaged. Eventually one confirms AD or an

alternative diagnosis. For example, one might initially look for potential pharmacological side

effects, responding by adjusting medication dosing. Systemic illness can be postulated, leading

to tests for (and potentially treatment of) hypothyroidism and B12 deficiency, for example. If

there is still no improvement in cognitive status, then imaging (CT or MRI) is used to rule out

other dementia causes like vascular dementia, hydrocephalus, tumors, and subdural hema-

toma. If there are signs of depression, it is treated. If still no improvement, Alzheimer’s

remains the leading diagnosis.

How could we employ our findings to treat Alzheimer’s? If an important feature involved

in predicting progression turned out to be relatively elevated, then blocking or buffering the

biomarker analyte could be therapeutic in the event that the elevation were causal, not just

symptomatic. For example, if the deviation of a feature were toward below average values, and

also causal, diet supplementation could be considered and tested. The machine learning analy-

sis we outlined could be employed at a variety of time points, or clinical milestones; and

changes in biomarkers could augur changes in progression.

Different panels of biomarkers could be used at different times in the disease progression,

as suggested by our results indicating stronger prediction from plasma biomarkers at disease

inception. We have shown the miscibility of the different types of features (anatomical fea-

tures, plasma analytes, gene mutations, cognitive performance, demographics) which can be

incorporated in the same analysis. As shown in the studies of Jack et al. [17, 32], detectable

Table 5. Statistics for plasma features alone & cognitive alone and paired with best plasma feature.

Dxb_12x27 cognitive_alone cognitive_and

_Dxb_12x27

kit_cardiac_

alone

kit_inflamma-

tory_alone

kit_metabolic_alone kit_neuro

_alone

Mann-Whitney U 437.500 1001.500 250.500 784.500 1396.000 1990.000 893.000

Wil Wilcoxon W 1427.500 1991.500 1240.500 1774.500 2386.000 2980.000 1883.000

ZZ Z -8.327 -6.362 -8.988 -7.101 -4.940 -2.841 -6.718

Asymp. Sig.

(2-tailed)

.000 .000 .000 .000 .000 .004 .000

Goodness of discrimination of NLs from stable MCI using RF techniques. The putative best plasma cohort (Dxb_12x27) is better than Cog alone, or MRI feature groups,

or other plasma groups based on p and Z values.

https://doi.org/10.1371/journal.pone.0235663.t005

Table 6. Statistics for MRI groups alone & paired with best plasma feature group.

MRI1_ alone MRI1_and_ Dxb_12x27 MRI1norm_alone MRI1norm and_Dxb_12x27 MRI2_alone MRI2_and_ Dxb_12x27

Mann-Whitney U 1914.000 1073.000 1705.000 458.500 2686.500 452.500

Wilcoxon W 2904.000 2063.000 2695.000 1448.500 3676.500 1442.500

Z -3.110 -6.082 -3.848 -8.253 -.380 -8.274

Asymp. Sig. (2-tailed) .002 .000 .000 .000 .704 .000

Goodness of discrimination of NLs from stable MCI using RF techniques. The putative best plasma cohort (Dxb_12x27) is better than Cog alone, or MRI feature groups,

or other plasma groups based on p and Z values.

https://doi.org/10.1371/journal.pone.0235663.t006

PLOS ONE Predict Alzheimer’s transition using machine learning approaches

PLOS ONE | https://doi.org/10.1371/journal.pone.0235663 July 27, 2020 21 / 26

https://doi.org/10.1371/journal.pone.0235663.t005
https://doi.org/10.1371/journal.pone.0235663.t006
https://doi.org/10.1371/journal.pone.0235663


changes of variables from different modalities often follow sigmoidal curves over time and

indicate the steps of progression.

Use of machine learning techniques

Attempts have been made to identify ADNI elements for predicting disease inception [33]

and/or progression [34] based on diagnostic biomarkers from various modalities. The utility

of multiple modalities has become clear, although researchers had initially specialized in single

modality studies [35]. Yet, analyses from single modalities have also been productive, espe-

cially when combined with advanced techniques like Random Forests and as applied to com-

plex modalities like structural MRI. Successful attempts have been reported discriminating

between, for example, 4 different diagnoses (healthy controls, early MCI, progressing MCI and

AD) with one modality, MRI [34].

Various procedures have been used to compress features within a modality, or multiple

modalities. This “early fusion” [34] can occur prior to use of machine learning techniques.

Alternatively, “late fusion” can combine post ML the derived variables [34]. Among the most

popular ML techniques are SVM, which we found worked well with lightly populated cohorts

and RF [34, 35], the overall best of the 4 ML approaches we employed [36].

MRI ROIs with various units like cortical volume, thickness or area can be normalized

by intracranial volume, age or stratified by categoricals like gender or genetic risk [37]. MRI

variables can be described in terms of rate of change (atrophy); or compressed into fewer

variables using principal component analysis (PCA) [38]. RF produces the GINI importance

coefficients available to help select a smaller group of important features [39]. Preparation

of our four MRI feature sets used many of these approaches. Finally, outcomes can be con-

verted from continuous variables into categorical variables like diagnostic labels using cut-

points [37].

Among the more novel findings in this current study are that the best features for predic-

tion tend to shift during disease progression, whereby plasma analytes are more powerful at

disease inception, and MRI later. Furthermore, we have highlighted the often overlooked

plasma analytes and shown their potential utility at the point of disease inception. Since much

of the research being done on blood biomarkers focused on a few analytes at a time, we

hypothesized that machine learning techniques could allow for a broad examination of many

features simultaneously Standard problems with CART, like overfitting, can be resolved by

using more advanced approaches designed to counter these problems, e.g. random forests or

gradient boost techniques. This advantage was clear in Figs 2 & 3, where CART was consis-

tently inferior.

By using simple blood tests in combination with machine learning, we may be able to iden-

tify patients at risk and/or patients who would benefit from additional testing, thereby moti-

vating and justifying more costly and invasive tests. This allows us to approach prediction

along a less expensive and lower risk path. Resulting hypotheses can be confirmed using more

standard diagnostics (like MRI, PET or CSF sampling of amyloid beta and phosphorylated

tau). Being able to use non-invasive, convenient, and relatively inexpensive tests allow for pre-

symptomatic tracking of large groups facilitating both early diagnosis, and FDA drug testing

because it would allow studies to track changes in the predictions after treatment. The targeted

clinical transition explored in Figs 2–7 is a little late in the disease process, but nonetheless

very important in identifying patients at imminent high risk for disabling advanced dementia.

The later analysis in this report (Figs 9 & 10), using automatic diagnosis at disease inception,

does focus on early detection and identifies a feature group that is quite appropriate for popu-

lation screening that would be required at this clinical milestone.
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